If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36x^2+24x-2=0
a = 36; b = 24; c = -2;
Δ = b2-4ac
Δ = 242-4·36·(-2)
Δ = 864
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{864}=\sqrt{144*6}=\sqrt{144}*\sqrt{6}=12\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-12\sqrt{6}}{2*36}=\frac{-24-12\sqrt{6}}{72} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+12\sqrt{6}}{2*36}=\frac{-24+12\sqrt{6}}{72} $
| 4x+6=3x+9x= | | 4a-6=52 | | 2d-5+41=24 | | 3z+9z+9z-9z+11=-13 | | 280=70(x) | | 3x+^5=21 | | 3(4y-)=16y | | 8.25+1/4w=10.25 | | x+9/8=1 | | 30p^2+p=7p | | 6x+4x-7=93 | | -3(z-8)+10=5 | | -2/3+5/6x=-1/3 | | 6(X-3)+15=5x | | 1/12x-x-24=0 | | 3.2g+1.25=81 | | -7x-8+5x=-10 | | x-31/5=23/10 | | p^2=125 | | p2=125 | | -12+x/2=-2 | | 21a=33 | | -4(-2x+8)=-40 | | 32.6=p+11.3 | | 1z-4=-16 | | 3z^2+1z-7=0 | | 15=50b | | 4x^2-3-11x=0 | | 4x+2x+4x+2x=360 | | 2x+9=12x-x | | -2(v+1)=6v-4+2(3v+3) | | 8x-6x+17x+6=-13 |